เอกสารเพิ่มเติมจากคู่มือ P2

คู่มือโปรแกรม MICROFEAP for Windows โมดูล P2 (เล่มแดง ปกแข็ง) เขียนขึ้นในเดือน พ.ค. 2548 เพื่อรองรับการใช้งานของโมดูล P2:Release 1.0 โปรแกรมได้รับการพัฒนาและปรับปรุงอย่างต่อเนื่องเป็น Release สูงขึ้น จนในเดือน ส.ค. 2553 ได้ออก Release 3.0 ตัวล่าสุด ซึ่งเพิ่มประสิทธิภาพในการออกแบบคาน และเสาคอนกรีตเสริมเหล็ก ดังนั้น เอกสารนี้จึงสรุปเนื้อหาในส่วนที่ได้ปรับปรุงเพิ่มเติมจากคู่มือ

1. <u>การ Run โปรแกรม</u> (ยกเลิกบทที่ 2 ในคู่มือ และให้อ่านตรงนี้แทน)

โปรแกรมรุ่นปัจจุบันถูกกำหนดให้ Run ใน Handy Drive (HD) ของชมรม เมื่อผู้ใช้เสียบ HD เข้ากับ ้เครื่องคอมฯ ให้ไปที่โฟลเดอร์ MFW_P2 แล้วคลิ๊ก Run ไฟล์ 隉 MFW_P2r30.exe หน้าต่าง Logo ของโมดูล P2 จะปรากฏขึ้นบนจอ ผู้ใช้สามารถอ่านคำแนะนำการใช้งานในบทที่ 3, 4, 5 และ 6 ตามลำดับ เมื่อจะออกจาก ้โปรแกรมให้คลิ๊กที่คำสั่ง <<u>E</u>xit> ในหน้าต่าง Activity Menu และก่อนจะดึง HD ออกจากเครื่อง ควรคลิ๊กปุ่ม icon 🤡 ที่ Task bar เพื่อบอกเครื่องให้หยุดการใช้งานช่อง Drive ที่เสียบ HD ตัวนั้น Master Filename

2. ในส่วนการป้อนข้อมูล Project Data

- ชื่อ Master Filename สามารถตั้งได้ถึง 18 ตัวอักษร Ø
- Project Title และชื่อ Engineer พิมพ์เป็นภาษาไทยได้ Ø
- การเลือกหน่วยของ Force และ Length จะมีผลต่อการคำนวณ
- 🗷 ในส่วนของ <Boundary data> มีปุ่มกดเลือกประเภทของ Supports แบบ Fixed และ Hinge ได้โดยสะดวก
- 🗷 ในส่วนของ <**M**aterial data>
 - มีปุ่มกดค่า Young's Modulus ของเหล็ก (Es) และ คอนกรีต (Ec) ให้เลือกใช้งาน ค่า E และ G-Modulus จะปรากฏขึ้นเองโดยอัตโนมัติตามหน่วยที่ผู้ใช้กำหนด
 - การป้อนค่า Section Properties ทำได้ 3 แบบ ดังนี้
 - 1) <u>G</u>eneral → ผู้ใช้ป้อนค่า A, I, J, ... เอง
 - Rectangular → กรณีหน้าตัดสี่เหลี่ยมผืนผ้า ป้อน ความกว้างและความลึก (B, D) โปรแกรมจะ คำนวณค่า A, I, J ให้เองโดยอัตโนมัติ
 - Steel Table → เลือกใช้หน้าตัดจากตารางเหล็กที่มีอยู่ในโปรแกรมกว่า 400 หน้าตัด (ตัว C, 2C, H, I, WF, เหล็กฉาก L, 2L, Pipe, Box, Light Lip_C) ค่า A, I, ... จะตามมาโดยอัตโนมัติ หากต้องจะเพิ่มหรือลบข้อมูล ของหน้าตัด ให้ใช้ปุ่มคำสั่ง <<u>A</u>dd> หรือ <<u>D</u>elete>

Steel Table	(407 Sectio	ons)					
Sections	Wt	Area	Ix	Iy	Sx	Sy	Rmin
	kg∕m	cm^2	cm^4	cm^4	cm^3	cm^3	cm
C75x40x5x7	6.9	8.82	75.3	12.2	20.1	4.5	1.18
C100x50x5x7.5	9.4	11.92	188	26.0	37.6	7.5	1.48
C125x65x6x8	13.4	17.11	424	61.8	67.8	13.4	1.90
C150x75x6.5x10	18.6	23.71	861	117	115	22.4	2.22
C150x75x9x12.5	24.0	30.59	1050	147	140	28.3	2.19

	Masterritename	
	Project Title M	ax. 18 char.
unnort —	Engineer	<u></u>
C Fived	Force Unit	kg 💌
	Length Unit	m 💌
C Free	- Type of P2 Str	uctural S
	Beam Grid 9	System

- 📧 ในส่วนของ <<u>L</u>oad data> เข้าไปที่เมนูย่อยของ <<u>V</u>olume load>
 - มีปุ่มกดเลือกค่าน้ำหนักวัสดุ (Self_weight) ของเหล็ก (7,850 kg/m³) และคอนกรีต (2,400 kg/m³) โดยอัตโนมัติตามหน่วย ที่เลือกไว้ในตอนตัน

Volume l	Load Data —		-Self-Weight-
Vx =		(kg/m^3)	Concrete
Vy =	-2400	(kg/m^3)	Steel

📧 เพิ่มช่องทางเลือกในการรับ <<u>G</u>et> และส่ง <<u>S</u>end> ข้อมูลในรูปของ Text File

โมดูล Release 3.0 ได้เพิ่มทางเลือกใน การรับข้อมูลของ Coordinate, Element Connectivity และ Nodal forces ทาง Text files ซึ่งสร้างจากโปรแกรมอื่น เช่น Notepad, Excel, Word, ... แล้ว save ภายใต้นามสกุล *.txt หรือ *.prn

ผู้ใช้คลิ๊กปุ่มคำสั่ง <<u>G</u>et data...> เลือก ไฟล์ข้อมูล และคลิ๊กปุ่มคำสั่ง <<u>G</u>et> เพื่อดึง ข้อมูลเข้าสู่โปรเจ็คที่ทำงาน ในทางกลับกันถ้า ต้องการจะส่งข้อมูลออก ก็สามารถใช้คำสั่ง <<u>S</u>end data...> พิมพ์ชื่อ Text file และเลือก File type ที่จะ save แล้วคลิ๊กปุ่มคำสั่ง <<u>S</u>end>

ตัวอย่างรูปแบบการพิมพ์ข้อมูลใน Text files

Coordinate data

พิมพ์ค่า x-coor.	เว้นช่องว่าง	พิมพ์ค่า y-coor. ของ Node 1
พิมพ์ค่า x-coor.	เว้นช่องว่าง	พิมพ์ค่า y-coor. ของ Node 2

 	 n

Element connectivity data

พิมพ์ค่า Start_node เว้นช่อง พิมพ์ค่า End_node ของ Elem.1 พิมพ์ค่า Start_node เว้นช่อง พิมพ์ค่า End_node ของ Elem.2

 	 n

a a 7-	🛃 7-st.txt - Notepad			
<u>F</u> ile	<u>E</u> dit	<u>S</u> earch <u>H</u> elp		
0	0	← ค่ำ (x, y) node 1		
0	3.2	<— ค่า (x, y) node 2		
0	6.4			
0	9.6			
0	12.8	<—ค่ำ (x, y) node 5		
0	16			

ตัวอย่าง Text file เก็บข้อมูล Coordinate พิมพ์ใน Notepad

<i>S</i> 7	🛃 7-ST.prn - Notepad				
<u>F</u> ile	<u>E</u> dit	<u>S</u> earch <u>H</u> elp			
1	2	← Connectivities ของ Elem1			
2	3	← Connectivities ของ Elem2			
3	4				
4	5				
5	6	← Connectivities ของ Elem5			
6	7				

ตัวอย่าง Text file เก็บข้อมูล Element Connectivity พิมพ์ใน Notepad

หน้า... 2

Load Case

Joint Load

Point Load

1 (LL)

~

<u>G</u>raphics Menu ⊙ Geometry ⊓

Deflection

Torsion

Shear

Moment

Reaction

Round no

3. <u>ในโหมดแสดงผลทาง Graphics</u>

- ช้อมูลของ Loads ที่กระทำ เช่น Joint loads, Point loads บนชิ้นส่วน, Uniform loads, หรือ Volume loads สามารถแสดงผลทางรูปกราฟฟิกได้ ช่วยให้ง่ายต่อการตรวจสอบข้อมูล
- 🗷 สามารถดูค่าของ Support Reactions ที่เกิดขึ้นในโหมดกราฟฟิกได้
- 📧 ชิ้นส่วนที่รับแรงภายในสูงสุด / ด่ำสุด มีการแยกส์ให้เห็นชัดเจน

4. <u>ในโหมดแสดงผลลัพธ์ Results</u>

- ж หน้าจอแสดงผลลัพธ์แบบตัวเลขของ Displacements, Stresses, Reactions มีการออกแบบให้เชื่อมโยงถึง กันเพื่อสะดวกต่อการเรียกใช้งาน และยังสามารถเชื่อมโยงไปยังผลลัพธ์แบบกราฟฟิกได้อีกด้วย บน หน้าจอของผลลัพธ์จะแสดงชื่อ Project พร้อมข้อมูลจำนวน Nodes, Elements, Material sets และ Load cases เพื่อบอกให้ผู้ใช้ทราบว่ากำลังทำงานที่โครงการใด
- 🗷 เมื่อคลิ๊กที่ช่อง Load case โปรแกรมจะแสดง Load title เพื่อเตือนความจำ หรือเมื่อคลิ๊กช่อง Material set โปรแกรมก็จะแสดงข้อมูลของหน้าตัดเช่นกัน
- มีแต่ละชุดของผลลัพธ์ที่แล[ื]ดงผล จะมีตารางสรุปค่าผลลัพธ์สูงสุดและด่ำสุด (Max./ Min.) ที่เกิดขึ้นเพื่อ รายงานให้ผู้ใช้ทราบเพื่อง่ายต่อการนำไปใช้ในการออกแบบ เช่น ค่า Max./ Min. deflection เกิดขึ้นที่ Nodes ใด หรือ ค่า Max./ Min. Moment เกิดขึ้นที่ Elements ใด เป็นตัน

หน้า... 3

5. <u>เพิ่ม Column Design ใหส่วหของ Rc Design</u>

โปรแกรมโมดูล P2:Release 3.0 ได้พัฒนาเพิ่มขีดความสามารถใน การออกแบบคานและเสาคอนกรีตเสริมเหล็กด้วยวิธีหน่วยแรงใช้งาน (Working stress design) อ้างอิงมาตรฐานการออกแบบของ วสท. ผู้ใช้ สามารถคลิ๊กเมนูคำสั่ง <<u>R</u>c_Design> จาก หน้าต่างของ Activity Menu เมนูย่อยของ Beam และ Column design จะปรากฏ ซึ่งมี 4 แบบให้เลือกใช้ งาน (คลิ๊ก <<u>A</u>bout the design> เพื่อดูรายละเอียด)

สำหรับเมนูออกแบบเสา <**C**olumn general> นั้น เป็นส่วนที่พัฒนา เพิ่มเติมเข้ามาใหม่ซึ่งจะกล่าวในหัวข้อถัดไป ส่วนการออกแบบ RC Beams นั้น ผู้ใช้สามารถศึกษาได้จากบทที่ 6 ของคู่มือ P2 เล่มเดิม

RC Design	About MFW	
Beam P2 Beam P2	(ALL sections) (Single section)	
Beam general Column general		
About the design		

5.1 <u>เมนูออกแบบเสา คสล. <Column general></u>

เมนูกำสั่งนี้จัดเตรียมไว้สำหรับผู้ใช้ที่ต้องการออกแบบเสาทั่วไปหน้าตัดสี่เหลี่ยมหรือวงกลมโดยป้อนค่า Axial Force และ Moment เอง เมนูนี้สามารถทำงานอย่างอิสระโดยไม่ยึดโยงกับข้อมูลส่วนอื่นของโปรแกรม โมดูล P2 เหมาะแก่การนำไปใช้งานของนักศึกษาและผู้สนใจทั่วไปที่ต้องการจะตรวจสอบหรือออกแบบหน้าตัด เสาใด ๆ โปรแกรมถูกออกแบบให้มีความยึดหยุ่นสูง สามารถนำไปใช้ในกรณีเสายาว (Long column) ได้ ยอมให้ ผู้ใช้กำหนดค่า Fc', Fy เอง มีปุ่มกดเลือกรูปแบบหน้าตัดเสา สามารถเลือก spacing ของเหล็กปลอก เลือก ขนาดและจำนวนเส้นของเหล็กยืน รวมถึงกำหนดค่า Minimum steel ได้เอง เป็นต้น โปรแกรมจะแสดงกราฟ P-M Interaction diagram และจุดปลอดภัยของ Load พร้อม Drawing ของเหล็กเสริมให้เห็น ผู้ใช้สามารถคลิ๊ก ปุ่ม <<u>E</u>nlarge drawing> เพื่อดูภาพขยายได้ นอกจากนี้โปรแกรมยังรายงานผลชี้วัดประเมินการออกแบบ เกรด A, B, C, D, F ให้ผู้ใช้ทราบ ในการออกแบบเพื่อใช้งานจริง ควรเป็นเกรด B ถึง C, แต่สำหรับนักศึกษาที่ทำ แบบฝึกหัดควรเป็นเกรด A แต่ถ้าต้องการ Safety มาก (ไม่กลัวเปลือง) ก็ควรเป็นเกรด D เป็นต้น อย่างไรก็ ตาม ผู้ใช้ควรระมัดระวังในเรื่องของการป้อนค่าตัวเลขให้เป็นไปตามระบบหน่วยที่โปรแกรมต้องการ

<u>Note:</u> ผู้ใช้สามารถกด <Help...> เพื่อดูคำแนะนำการจัดเหล็กปลอก

หน้าจอออกแบบเสา คสล. ของเมนูคำสั่ง <Column General>

5.1b <u>ปริมาณเหล็กยืนในเสา</u>

วสท 4800 (ฉ)

- ปริมาณเหล็กยืนในเสาต้องไม่ต่ำกว่า 1% และ
 ไม่เกิน 8% ของพื้นที่หน้าตัดเสาจริง (Ag)
- Diameter ของเหล็กยืนต้องไม่เล็กกว่า 12 มม.
- เหล็กยืนในเสาสี่เหลี่ยมต้องไม่น้อยกว่า 4 เส้น
- เหล็กยืนในเสากลมต้องไม่น้อยกว่า 6 เส้น

5.1b <u>ปริมาณเหล็กยืนในเสา</u> (ต่อ)

วสท 4800 (จ)

 ในกรณีเสาที่มีพื้นที่หน้าตัดมากกว่าที่ต้องการใน การรับน้ำหนัก ปริมาณเหล็กเสริมที่น้อยที่สุด ให้ ดำนวณจากพื้นที่หน้าตัดเสาจริงที่ลดลงได้ (Ae) แต่ค่า Ae ที่ลดลงนั้นต้องไม่ต่ำกว่าครึ่งหนึ่งของ หน้าตัดเสาจริง (Ag)

Minimum Steel 0.5% Ag, or max. 1% Ae-1% Ag (normal case)

หน้า... 6

การเลือก Minimum Steel ที่ 1%Ag มักใช้ในงานออกแบบเสาทั่วไปที่ผู้ออกแบบไม่สนใจเรื่องความ สิ้นเปลืองของปริมาณเหล็กเสริมต่ำสุดซึ่งจะเพิ่มขึ้นตามหน้าตัดเสาที่มีขนาดใหญ่ขึ้น ดังนั้น ในกรณีของเสาที่รับ น้ำหนักน้อยแต่ผู้ออกแบบเลือกใช้หน้าตัดใหญ่ การใช้ Option ที่ 1%Ag จึงเป็นการสิ้นเปลืองเหล็กเสริมโดยไม่ จำเป็น แต่หากเลือกใช้ Minimum Steel ที่ 0.5%Ag หรือค่ามากของ 1%Ae จะได้ปริมาณเหล็กเสริมดิ่าสุดที่ เหมาะกับการใช้งานจริงมากกว่า โปรแกรมจะคำนวณหาหน้าตัดประสิทธิผล (Ae) ให้ ซึ่งไม่ว่าขนาดหน้าตัดจริง (Ag) จะใหญ่เท่าใดก็ตาม ภายใต้การรับน้ำหนักน้อยๆ ค่าเดียวกัน ย่อมจะได้ค่า Ae เท่ากัน ดังนั้น ปริมาณ เหล็กเสริมที่ 1%Ae จึงมีค่าเท่ากันในทุกกรณี (ดูตัวอย่างของหน้าตัดเสาทั้ง 3 ขนาดในรูป) แต่จากข้อกำหนด ของ วสท 4800 (จ) ให้เปรียบเทียบ 1%Ae กับค่า 0.5%Ag แล้วนำค่ามากกว่าไปใช้งาน

